
Abstract

Six Different ML Model on Tweet Sentiment Analysis
Chenqi Guo, Guoping Li, Ziqin Xu

chenqiguo2019@u.northwestern.edu; guopingli2017@u.northwestern.edu;
ziqinxu2017@u.northwestern.edu

EECS349 Machine Learning
Northwestern University

 Our task​ is to predict the sentiment (positive or negative) in a tweet text dataset based on
the text using several different ML algorithms, and finally compare the result and accuracy
among these different algorithms.
 ​More specifically:​ In this project, we analyzed the sentiment distribution and tried to
recognize the sentiment features from test based on tweet sentiment analysis dataset. We plan
to adapt different ML algorithms and visualize their performance under different testing
conditions.
 ​Why is the task important: ​Because sentiment analysis is useful in social media, like
determining market strategy, improving customer service, testing business KPIs and so on. Also
it is convenient to get the related datasets on Github, Kaggle or Twitter.
 ​ The models we used​ contain Logistic Regression, Support Vector Machine, Decision Tree,
Nearest Neighbor, LSTM and Naive Bayes. The strategy we used to convert text into
high-dimensional vector is called ​bag of word​ method, so the ​features​ are words in the word
vector. To find a best representation of tweet text, we tried different dimensions of word vectors.
 ​Key results:
 1. The effect of different bag of word
 Generally, the accuracy of using a 1000-dimensional bag of word is higher than that of
2000-dimensional bag of word, because 2000-D increases the noise.
 2. The effect of different learners
 LSTM has the highest accuracy (about 75%), while Naive Bayes has the lowest accuray
(about 66.5%).

 ​Word Cloud using Logistic Regression shows the top 20 weighted words in positive
sentences and negative sentences, respectively:

Detailed Final Report
Six Different ML Models for Tweet Sentiment Analysis

Chenqi Guo, Guoping Li, Ziqin Xu
chenqiguo2019@u.northwestern.edu; guopingli2017@u.northwestern.edu

EECS349 Machine Learning
Northwestern University

In this course project report, we discussed the difference of performance for 6 different ML
algorithms, including Logistic Regression, Decision Tree, Nearest Neighbor, Long Short Term
Memory, and Naive Bayes Classifier, and Support Vector Machine. We mainly explore the
influence of training size to the precision and recall of the model. And we used the ​bag of word
method to convert a sentence into a high-dimensional vector (6000, 4500, 3000, 2000, and
1000). The reason we used precision and recall to represent our results instead of the value of
accuracy is because the dataset is not evenly distributed with positive and negative results.

In the Logistic Regression, we first randomly chose 500 positive samples and 500 negative
samples as testing set. The testing set will never be used for training. Then, we adapted
different size of training set to train the Logistic Regression model. We can obviously find that
the precision and recall value changed as we increased the size of training set. The line is
fluctuating but the general trend is going toward down first and then reaching a plateau, which
means the training set is gradually achieving the upper limit.

We then explore the influence of vector dimension. We used different dimensions (600, 4500,
3000, 1500) of vector to train the model. We found that no matter what dimension it is, all of
them will finally achieve a plateau when the size of training set is large enough. However,
significantly, we also found that a smaller vector size will result in a faster speed to achieve the
performance plateau (Figure 1. red dash line).

Then, we decided to explore the influence of the size of test set. We chose 6000-dimension
vector because we we would like to include as many features as possible. We found that more
samples in the test set result in a more significant difference between test recall and train recall.
We are still not very sure about the reason behind this tendency.

1. Logistic Regression

2. Decision Tree
To evaluate the performance of difference classifier, we also used some classic algorithm like
Decision Tree and Nearest Neighbor, as shown in Figure 2 and Figure 3.

For Decision Tree, since its VC dimension is infinite, we can get about 100% accuracy for the
training data set. However, as we do not use a pruning strategy (the scikit learn package does
not support pruning), this method is definitely overfitting when applied to testing data set.

Figure 2 shows the effect of different feature size (with fixed training set size of 20000) and
training set size on the precision and recall of training and testing data set. When applying
different feature size (i.e., different bag of word), the training precision slightly increases, while
testing precision and recall rarely change. When training our decision tree with increasing data
set size, the training precision shows a slight decreasing trend while the test precision and recall
fluctuate but still remain about 70%. Namely, feature size and training set size can hardly
influence the testing results in decision tree.

3. Nearest Neighbor

Figure 3 shows the results we get with KNN algorithm. Also, since the VC dimension of Nearest
Neighbor classifier is infinite, we can still get an 100% accuracy for training.
The figure in left shows 1-NN results on different training set size, while the figure in right shows
results on fixed 2000 training data samples with different K values. As we increase the training
set size, testing accuracy and recall fluctuates because of a trade off between informative data
samples and noised features. As we increase the value of K, it is impressive that training
precision decreased while testing precision and recall remained about 63%. A probable reason
for this performance is that in 1-NN, each training data sample is the nearest neighbor for itself,
but when K is greater than 1, each training data sample should consider others.

4. LSTM

In LSTM, because of the huge computation required to build word embedded layer and LSTM
layer. We just used 10000 tweets to build one model and output test result as a histogram. Here
we can see recall is high as about 0.75 and precision as 0.68 which are not so good but
pred_acc as test accuracy is good enough as 0.71. Also, variance is not so large as about 0.1
so overfitting is not a big problem in this model. Ideally, with larger dataset input will show the
true power of this LSTM model with less bias and improve precision to a much more reasonable
result.

5. Naive Bayes

6. Support Vector Machine

In the Naive Bayes classifier and support vector machine classifier (Figure 5 and Figure 6), each
the length of sentence is much less than the dimension of vector. So, Nearly all of the vectors
are very sparse, which created a challenge for linear support vector machine classifier and
naive bayes classifier. Because in Naive Bayes classifier, we did not apply the Add One Smooth
strategy to avoid the risk of getting zero. So, in these two classifiers, they did not catch the main
features words at all. Their performance is irrelevant to the size of training set. Their precision

and recall value stay at a constant value for whatever size of the training set. So the Support
Vector Machine classifier is not very effective when handling a very sparse vector. And we
learned that we should apply the Add One Smoothing method to the Naive Bayes classifier
before we initialized the training. More importantly, we should develop and test other
vectorization methods instead of the ​bag of word ​when using these two ML models.

Conclusion:

In this project, we explored the performance of 6 different ML algorithms for sentiment analysis.
We found that given the​ bag of word​ method, the Logistic Regression algorithm has the best
test precision value (0.75) when the dimension of vector are 1500 and 3000 and the size of
training set are around 90,000. Then, we extracted the words with highest weight classified by
Logistic Regression algorithm, and we draw two word clouds for the positive words and negative
words, respectively. (Figure in abstract, a bigger size of word in a word cloud means this word
has a higher weight)

The Decision Tree classifier shows a nearly perfect training precision, but the test precision and
test recall are lower than any other algorithms we explored. This is because the decision tree
classifier is extremely sensitive to overfitting.

The Nearest Neighbor classifier also provide great training precision. But its test precision and
test recall is close to the performance of decision tree classifier. And we tested its performance
when we have different values of K. It shows that the test precision is kind of irrelevant to the
value of K, when K is in range of 1 to 5. This might due to the feature of ​bag of word​ method,
because the bag of word method created a very high-dimension vector, which involves lots of
noise to the L2-distance of K-NN algorithm.

Technically speaking, LSTM may have a very competitive test precision (0.68) among all these
ML methods we used, since it is a refined version of neural network, which can perform well in
this task. However, due to the limitation of our laptop’s RAM and GPU, we can only get an
accuracy as good as the best one among other methods in practice. We will try to fix this
memory problem with Google Cloud in the future.

Finally, we also found that the extent of sparseness of vector is critical for some
classifiers,including Naive Bayes classifier and Support Vector Machine classifier. If the vector
are sparse, the classifier lose its capability to classifier because those 0 values would cause a
big bias, which makes the classifier’s prediction become random. Even in this situation, the NBC
and SVM still obtain a test precision around 0.65, which is close to the performance of DT and
K-NN.

Cooperation:

In this project report, we worked as a team. The construction of web pages were completed by
Ziqin.The abstract part of this report was mainly completed by Chenqi and Guoping. All of the
datasets using in this project were downloaded from public open source (twitter, kaggle, etc)
and were process to remove punctuations, stop words and numbers by Guoping and Ziqin. The
detail final report and the corresponding codes with visualizations are completed by Guoping
(Logistic Regression, Support Vector Machine, Naive Bayes classifier, figures of word cloud and
the conclusion part), Chenqi (Decision Tree and Nearest Neighbor) and Ziqin (LSTM).

